
Improved
cross-study
prediction

through batch
effect

adjustment

Roman
Hornung

et al.

Background

Batch effect
removal
methods

New method
FAbatch

Batch effect
removal for
prediction

Real data
study

Conclusion &
Outlook

1/20

Improved cross-study prediction through batch
effect adjustment

Roman Hornung

Joint work with David Causeur and Anne-Laure Boulesteix

LMU Munich
Department of Medical Informatics, Biometry and Epidemiology

March, 17th, 2015



Improved
cross-study
prediction

through batch
effect

adjustment

Roman
Hornung

et al.

Background

Batch effect
removal
methods

New method
FAbatch

Batch effect
removal for
prediction

Real data
study

Conclusion &
Outlook

2/20

Lack of applied high-dimensional prediction rules

Context: Prediction of phenotypes based on
high-dimensional biomolecular data

Very common in biostatistical/bioinformatical literature

In contrast: respective prediction rules hardly applied in
medical practice

Such prediction rules could assist medical practitioners in
their decision making.
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Problem: Batch effects increase prediction error

In pratice, prediction rules are commonly applied to data
(“test data”) from different sources than the training data
(cross-study prediction).

⇒ Batch effects strike!

⇒ Potentially high prediction error 
Batch effects: Systematic distortions between different
sources of data for reasons unrelated to biological signal of
interest.
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Batch effect removal for prediction

Idea: Make the test data more similar to the training data
used to obtain the prediction rule.
⇒ Smaller prediction error (?)

Approach: Use (alternated versions of) batch effect
removal methods (Luo et al., 2010).

Restricting requirement: Test data has to come in groups
— no batch effect removal for single observations possible.

We are interested in comparing our recently developed
method FAbatch with other methods in this respect.
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Simple batch effect removal methods

Mean-centering: Batchwise centering of the variables

Standardization: Mean-centering with additional batchwise
scaling of the variables to unity

Ratio-A: Batchwise dividing of the variables by their
arithmetic means

Ratio-G: Batchwise dividing of the variables by their
geometric means
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ComBat: Location-and-scale adjustment
(Johnson et al., 2007)

Model:

Xijg = µg + γjg + δjg εijg , εijg ∼ N(0, σ2
g )

i observation, j Batch, g variable (e.g. gene)

Before batch effect adjustment:

E(Xijg ) = µg + γjg , Var(Xijg ) = δ2
jgσ

2
g ,

Corr(Xijg1 ,Xijg2) = ρg1g2

After batch effect adjustment:

E(X̃ijg ) = µg , Var(X̃ijg ) = σ2
g , Corr(X̃ijg1 , X̃ijg2) = ρg1g2
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(frozen) SVA: adjustment for latent factors
(Parker et al., 2013)

Model:

Xijg = µg +
m∑
l=1

bglZijl + εijg , Var(εijg ) = σ2
g ,

εijg independent, Zij1, . . . ,Zijm ∼ Fij latent factors

Before batch effect adjustment:

E(Xijg ) = µg , Var(Xijg ) = σ2
ijg , Corr(Xijg1 ,Xijg2) = ρijg1g2

After batch effect adjustment:

E(X̃ijg ) = µg , Var(X̃ijg ) = σ2
g , Corr(X̃ijg1 , X̃ijg2) = 0
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New method FAbatch — based on ComBat and
SVA

Model:

Xijg = µg + γjg +

mj∑
l=1

bjglZijl + δjg εijg , εijg ∼ N(0, σ2
g )

Zij1, . . . ,Zijmj

iid∼ N(0, 1), εijg independent

Before batch effect adjustment:

E(Xijg ) = µg + γjg , Var(Xijg ) =
m∑
l=1

b2
jglδ

2
jgσ

2
g ,

Corr(Xijg1 ,Xijg2) =
m∑
l=1

bjg1lbjg2l

After batch effect adjustment:

E(X̃ijg ) = µg , Var(X̃ijg ) = σ2
g , Corr(X̃ijg1 , X̃ijg2) = 0
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Protection of biological signal of interest

“Problem”: Due to the class signal we actually have (assuming
a two-class prediction problem):

E(Xijg ) = αg + βgcli := µclig , cli ∈ {0, 1}

NOT as written before E(Xijg ) = µg .

⇒ When assuming a constant mean while estimating and
removing the factor influences

∑mj

l=1 bjglZijl we remove (part

of) the biological signal of interest. 
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Protection of biological signal of interest

Class cli naturally not known on the test data.

⇒ Cannot be used in the estimation. 

Solution for FAbatch
√

: Using penalized logistic
regression we estimate the probabilities P(cli = 1) and use
these for the actual classes cli ∈ {0, 1} in the FAbatch
estimation algorithm.
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Difference to conventional batch effect removal

Conventional batch effect removal:

Batch 1 Batch 2

Batch effect removal for prediction purposes:

Fixed training data Test data

possibly after
transformation Batch 1 Batch 2
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Batch effect removal methods in prediction

Mean-centering, standardization, ratio-A and ratio-G do
not have to be altered for prediction, because they do not
consider information across batches.

ComBat and FAbatch do, since they involve the
batch-unspecific parameters µg (or µclig resp.) and σ2

g . In
the context of prediction we take the means and variances
of the training data to be these parameters.

For SVA there exists a method called “frozen SVA”
designed for prediction.
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Real data comparison study

6 independent breast-cancer microarray datasets (with
dichotomized survival times; excluding censorings)

Sample sizes between 90 and 100 observations, 11,108
variables (after variable filtering)

Methods: FAbatch, ComBat, frozen SVA, Mean centering,
standardization, ratio-A, ratio-G, no batch effect removal
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Real data comparison study

Cross-study validation (see Bernau et al., 2014): Consider
all pairs of datasets. In each pair use one dataset as
training and the other test set. Then switch the roles of
training and test set.

Classification method: Linear Discriminant Analysis on
Partial Least Squares components

Performance metric: misclassification error rate
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Cross-study valid. error vs. Cross-validation error
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Cross-study validation error separate after method
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Different improvement for different training data
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Conclusion & Outlook

Empirical study suggests only limited overall reduction of
cross-study prediction error through batch effect removal.

FAbatch performed not clearly better than other methods
— has however benefit to keep original range of the data
— other than e.g. mean centering

Outlying training data sets seem to benefit more from
batch effect removal.

Outlook: Prediction rules obtained on several datasets
simultaneously may have better cross-study prediction
performance, because they incorporate a greater
heterogeneity.
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.

Thank you for your attention!
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