

Are published complex prediction rules applicable?

> Roman Hornung

Introduction

Survey design results

Recommendations to enable application

Further notes & conclusions

Are published complex prediction rules currently applicable for readers? A survey of applied random forest literature and recommendations

Anne-Laure Boulesteix*, Silke Janitza*, **Roman Hornung**, Philipp Probst, Hannah Busen, Alexander Hapfelmeier

LMU Munich Institute for Medical Information Processing, Biometry and Epidemiology

August, 29th, 2017

*contributed equally

Introduction

Are published complex prediction rules applicable?

> Roman Hornung

Introduction

Survey design results

Recommendations to enable application

Further notes & conclusions

- prediction rule: empirically learned function which uses covariate data of a patient to return a prediction of his/her value of a specific phenotype variable
- prediction rules presented and evaluated in numerous articles in the biomedical literature
- important question: Are these rules accessible to readers interested to apply them?
- Answer depends on various factors, among them importantly the choice of the method to construct the prediction rule.

Differing model complexities of logistic regression and Random Forest

Roman Hornung

Introduction

Survey design results

Recommendations to enable application

Further notes & conclusions

Applicability of published RF prediction rules? A Systematic literature review

Are published complex prediction rules applicable?

> Roman Hornung

Introduction

Survey design results

Recommendations to enable application

Further notes & conclusions

- study cohort: 30 research papers that present a prediction rule obtained using RF (journal: PLOS ONE, field: medical and health science, time frame: 2014/2015)
- study goals:
 - Provide an empirically grounded up-to-date picture on the applicability of published RF prediction rules.
 - **2** Give recommendations on making RF prediction rules applicable.

Results

Are published complex prediction rules applicable?

> Roman Hornung

Introduction

```
Survey
design
results
```

Recommendations to enable application

Further notes & conclusions

- prediction rule available without intervention
 1 of 30 papers (3%)
- prediction rule constructable using available data + code

1 of 30 papers (3%)

- prediction rule not constructable after contacting corresponding authors X:

20 of 30 **papers (67%)** (9 no response, 11 necessary material not sent)

Options for making complex prediction rules applicable I

Are published complex prediction rules applicable?

> Roman Hornung

Introduction

Survey design results

Recommendations to enable application

Further notes & conclusions

- Option A: providing a software object (e.g., R object randomForest usable by R function predict())
 - training data not required
 - ▶ prediction rule not modifiable
- Option B: providing data and code
 - adaptation of prediction rule possible
 - analysis flow completely transparent
 - results reproducible
 - 🛰 training **data** must be provided

Options for making complex prediction rules applicable II

Are published complex prediction rules applicable?

> Roman Hornung

Introduction

Survey design results

Recommendations to enable application

Further notes & conclusions Option C: providing an online tool (e.g., using R package shiny)

- no knowledge of software required
- fast applicability
- ▶ prediction rule not modifiable
- Option D: providing a Predictive Model Markup Language (PMML) document ("interchange format")
 - software independent ⇒ permanent applicability
 - integration of data preprocessing steps possible
 - 🛰 specialized knowledge required
 - ▶ prediction rule not modifiable

Choice depends on context - no universally best option.

Recommendations

Are published complex prediction rules applicable?

> Roman Hornung

Introduction

Survey design results

Recommendations to enable application

Further notes & conclusions

- authors' homepages often not longstanding X
 - \Rightarrow Provide materials in the paper supplement.
 - \Rightarrow permanent availability §
- Provide a meticulous description of the steps needed to obtain a prediction using the prediction rule.
 - \Rightarrow intrinsic applicability check
 - \Rightarrow facilitates in particular the conduction of complicated pre-processing steps
- Beyond the scope of the survey, our recommendations are applicable also to other prediction methods than RF.

Further notes & conclusions

Are published complex prediction rules applicable?

> Roman Hornung

Introduction

Survey design results

Recommendations to enable application

Further notes & conclusions

- published RF prediction rules not always intended for immediate application ("proof of principle")
- Nevertheless: Published RF prediction rules are to date seldom applicable; contacting the corresponding authors very often does not help.
- Actual situation might be even worse due to optimistic study design (investigators' expertise, journal choice, considered time frame).
- lack of awareness of limited applicability of prediction rules in the scientific community

References and thank you for your attention!

Are published complex prediction rules applicable?

> Roman Hornung

Introduction

Survey design results

Recommendations to enabl application

Further notes & conclusions

 Boulesteix, A.-L., Janitza, S., Hornung, R., Probst, P., Busen, H., Hapfelmeier, A. (2016).
 Making complex prediction rules applicable for readers: Current pre-

Making complex prediction rules applicable for readers: Current practice in random forest literature and recommendations. Technical Report No. **199**, Department of Statistics, LMU.

```
Chang, W., Cheng, J., Allaire, J., Xie, Y., McPherson, J. (2015).
shiny: Web Application Framework for R.
R package version 0.11.1.
http://CRAN.R-project.org/package=shiny
```

Guazzelli, A., Zeller, M., Lin, W.-C., Williams, G. (2009). PMML: An open standard for sharing models. *The R Journal* 1, 60–65.

Hastie, T., Tibshirani, R., Friedman, J. (2017).
Random Forests.
The Elements of Statistical Learning: Data Mining, Inference and Prediction Springer, New York, pp. 587–604.
Peng, R. D. (2011).

Reproducible research in computational science. *Science* **334**, 1226–1227.

Are published complex prediction rules applicable?

> Roman Hornung

- From each paper the same information was extracted.
- All information was gathered by two statisticians independently.
- information included:
 - **type of data** (e.g., clinical, omics, imaging)
 - software used (e.g., R (package), Weka, Matlab)
 - complex data preprocessing necessary?
 - availability of data / of codes used to produce the RF (supplementary files, external link, not available)
- contacted authors if prediction rule not obtainable by provided information

Applicability: comparison with logistic regression

Are published complex prediction rules applicable?

> Roman Hornung

study design:

- 122 PubMed listed papers that present a prediction rule obtained using logistic regression (time frame: 2014/2015)
- **no contacting** of paper authors (⇒ pessimistic bias!)
- not well comparable to survey on RF (only low-dimensional data, stronger focus on medical papers)

results:

- prediction rule available/constructable ✓:
 - 55 of 122 papers (45%)
- prediction rule not available/constructable X: 67 of 122 papers (55%)
- conclusions:
 - much better applicability for logistic regression than for RF
 - still much room for improvement