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Introduction

Ordinal forests

m Ordinal forests (OFs) are a method for the prediction of
ordinal outcomes using covariate information.

Introduction
m They are regression forests that use score values

S1,...,5y in place of the class values 1,..., J of the
ordinal outcome.

m score values si,...,s; optimized in such a way that the
OF features an optimal (out-of-bag (OOB)) estimated
performance

m concept of OF based on latent variable assumption:
ordinal outcome assumed to be coarsened version of a
latent metric variable
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Algorithm

Ordinal forests

Optimize score set:

® 5,...,5; optimized by: 1) generating many score sets
randomly, 2) constructing an OF for each and 3)
averaging across the ones associated with the best
performance

Method

m performance measured via the out-of-bag observations of
the trees in the forests using a performance measure

()
m Different choices of g(-) lead to different kinds of
performance.

Grow a OF f;na with Biinal trees (e.g. Bfinal = 10%) using
s1,...,S; as score set.

3/13



Performance measure g(+)

Ordinal forests

“Equal”: Classify observations from all classes with the
same accuracy.

Method “ . " H

e = “Proportional”’: Classify correctly as many
observations as possible (larger classes are given more
weight).

m “Oneclass’: Maximize the performance with respect to
a specific class, disregarding the other classes.

m NEW: “Probability”: Allow conditional class
probability estimation (by using the ranked probability
score).
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R package ordinalForest

Ordinal forests

m on CRAN, version 2.4-1

m ordinalForest uses (code from) R package ranger (fast!)
to construct the regression forests

Implementation

m variable importance measure (VIM) - two variants:

based on misclassification error rate — importance with
respect to class point prediction

NEW: based on ranked probability score — importance
with respect to conditional class probability estimation
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Real data analysis - study design

Ordinal forests

m five real datasets

m four methods: 1) OF using 1,...,J as score values
(“naive OF"), 2) OF, 3) multi-class Random Forests
Application & (RF), 4) ordered probit regression

comparison to
alternatives

m goal: Assess prediction performance.
m performance metrics: Cohen's Kappa, weighted Kappa
m validation scheme: 10 times repeated 10-fold

cross-validation
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Ordinal forests

Application &
comparison to
alternatives

Real data analysis - results: Cohen's Kappa
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Real data analysis - results: linearly weighted Kappa

Ordinal forests
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Simulation results

Ordinal forests

three considered methods: 1) naive OF, 2) OF, 3)
multi-class RF

= prediction performance: For all settings (with not
i negligibly small signal) OF better than naive OF and
comparison t0 multi-class RF

alternatives

m variable importance (based on misclassification error
rate): OF better than multi-class RF, no improvement
over naive OF

m OF particularly effective when the low and high classes
are smaller (common in practice)
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Outlook: Estimating conditional class probabilities and

considering the ordinal scale in the ranking of the variables

Ordinal forests ™ Background:

in its original form (Hornung (2020a)) OF only suitable
for point class prediction, not conditional class
probability estimation

Buri & Hothorn (2020): introduce Ordinal Transformation
Forests (OTFs); find that available performance
measures (“equal’ and “proportional”) do not perform

ook well for conditional class probability estimation using OFs.
stimating
conditional
[SEES
el = = New performance measure: Use of (negative)
ideri HH .
SRR ranked probability score (RPS):
scale in the
ranking of the
variablges n J i 2
RPS = = E J I > B(Y; <IXi = x) = 1(Y; <))
- O
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Outlook: Estimating conditional class probabilities and

considering the ordinal scale in the ranking of the variables

Ordinal forests

m Evaluated OFs for probability estimation with the
negative RPS using the same simulation design as Buri
& Hothorn (2020).

= Much better performance than for performance
measures “equal’ and “proportional’; performance
comparable to OTFs (depending on setting: similar,

better or worse).
Outlook:

Estimating

conditional

e il m New VIM based on RPS:
probabilities
and
considering

1 ntree
the ordinal O0OB- ted j
scale in the VIMJ = — E RPSE‘ree i permute J) - RPStree i
ntree 4 - ’ ’
1=

ranking of the
variables

- To Do: Performance evaluation of new VIM...
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Thank you for your attention!
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Performance measures g(-) for different purposes

LR Be Yind(y,y,/) Youden’s index for predicting class j, where
y / ¥ is the vector of true / predicted classes, then:

m equal classification performance for all classes =
1 J
g(y.y) =5 Yind(y,y.j)
j=1

m equal classification performance for all observations =

Z #{yl —J i€ {1 }} Ylnd(y y, J)

j=1

m optimal prediction performance for class | =

g(y,y) =Yind(y,y,/)
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Ordinal forests

Real data analysis - datasets

Dataset # observ. | # classes | class frequenc. | # covariates
mammography 412 3 234, 104, 74 5
nhanes 1914 5 198, 565, 722, 26
346, 83
supportstudy 798 5 310, 104, 57, 15
7, 320
vlbw 218 9 33, 16, 19, 15, 10
25, 27, 35, 36,
12
winequality 4893 6 20, 163, 1457, 11

2198, 880, 175
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Ordinal forests

Real data analysis - results: quadratically weighted

Kappa
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Ordinal forests

Simulation - study design

m three methods: 1) naive OF, 2) OF, 3) multi-class RF

m 30 settings, 100 datasets per setting

m setting parameters:

m correlations among covariates

sample size
number of covariates
numbers of classes of ordinal outcome

known true intervals considered for latent variable
underlying ordinal outcome
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Simulation - results Il

Ordinal forests

m partition [0, b;], b1, by, ...]|bs—1,1] of [0,1]
corresponding to the optimized scores s1,...,s; NO
meaningful indicator of actual “class widths”
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Performance regarding class probability estimation: Predicted

out-of-sample log-likelihood minus true log-likelihood

Ordinal forests
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Performance regarding class probability estimation:
Predicted out-of-sample log-likelihood

Ordinal forests

No effect Prop. Odds Non-Prop. Odds Combined
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Performance regarding class probability estimation: Kullback-

-~

Leibler divergence - P(Y = y|X = x) vs. P(Y = y|X = x)

Ordinal forests

No effect
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Performance regarding class probability estimation: Kullbac
Leibler divergence - Y vs. P(Y = y|X = x)

Ordinal forests
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Performance regarding point prediction: Kullback-
Leibler divergence - Y vs. P(Y = y|X = x)

Ordinal forests

No effect Prop. Odds Non-Prop. Odds Combined
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