

Ordinal forests

Roman Hornung

Introduction

Method

mplementatic

Application & comparison to alternatives

Estimating conditional class probabilities and considering the ordinal scale in the

Ordinal forests: Prediction and covariate importance ranking with ordinal response variables

Roman Hornung

Institute for Medical Information Processing, Biometry and Epidemiology,
University of Munich

December, 21th, 2020

Introduction

Ordinal forests

Roman Hornung

Introduction

ivietnoa

mplementati

Application & comparison to alternatives

Outlook:
Estimating
conditional
class
probabilities
and
considering
the ordinal
scale in the
ranking of the

- Ordinal forests (OFs) are a method for the prediction of ordinal outcomes using covariate information.
- They are **regression forests** that use **score values** s_1, \ldots, s_J in place of the class values $1, \ldots, J$ of the ordinal outcome.
- **score values** s_1, \ldots, s_J **optimized** in such a way that the OF features an **optimal** (out-of-bag (OOB)) estimated **performance**
- concept of OF based on latent variable assumption: ordinal outcome assumed to be coarsened version of a latent metric variable

Algorithm

Ordinal forests

Roman Hornun

Introduction

Method

mplementat

Application & comparison to alternatives

Outlook:
Estimating
conditional
class
probabilities
and
considering
the ordinal
scale in the

Optimize score set:

- s₁,...,s_J optimized by: 1) generating many score sets randomly, 2) constructing an OF for each and 3) averaging across the ones associated with the best performance
- performance measured via the out-of-bag observations of the trees in the forests using a **performance measure** $g(\cdot)$
- Different choices of $g(\cdot)$ lead to different kinds of performance.
- 2 Grow a **OF** f_{final} with B_{final} trees (e.g. $B_{\text{final}} = 10^4$) using s_1, \ldots, s_J as score set.

Performance measure $g(\cdot)$

Ordinal forests

Roman Hornung

Introductio

Method

.

Application & comparison to alternatives

Outlook:
Estimating
conditional
class
probabilities
and
considering
the ordinal
scale in the
ranking of the
variables

- "Equal": Classify observations from all classes with the same accuracy.
- "Proportional": Classify correctly as many observations as possible (larger classes are given more weight).
- "Oneclass": Maximize the performance with respect to a specific class, disregarding the other classes.
- NEW: "Probability": Allow conditional class probability estimation (by using the ranked probability score).

R package ordinalForest

Ordinal forests

Roman Hornung

Introductio

Metho

Implementation

Application & comparison to alternatives

Outlook:
Estimating
conditional
class
probabilities
and
considering
the ordinal
scale in the
ranking of the
variables

on CRAN, version 2.4-1

ordinalForest uses (code from) R package ranger (fast!) to construct the regression forests

- variable importance measure (VIM) two variants:
 - based on misclassification error rate importance with respect to class point prediction
 - **NEW**: based on ranked probability score importance with respect to conditional class probability estimation

Real data analysis - study design

Ordinal forests

Roman Hornung

Introductio

Metho

Implementati

Application & comparison to alternatives

Outlook:
Estimating
conditional
class
probabilities
and
considering
the ordinal
scale in the
ranking of the

■ five real datasets

- four methods: 1) OF using 1,..., J as score values ("naive OF"), 2) OF, 3) multi-class Random Forests (RF), 4) ordered probit regression
- **goal**: Assess **prediction performance**.
- performance metrics: Cohen's Kappa, weighted Kappa
- validation scheme: 10 times repeated 10-fold cross-validation

Real data analysis - results: Cohen's Kappa

Ordinal forests

Application & comparison to alternatives

Real data analysis - results: linearly weighted Kappa

Ordinal forests

Roman Hornung

Introductio

Metho

Implementat

Application & comparison to alternatives

Outlook:
Estimating
conditional
class
probabilities
and
considering
the ordinal
scale in the
ranking of the

Simulation results

Ordinal forests

Roman Hornung

Introductio

Method

plementati

Application & comparison to alternatives

Estimating conditional class probabilities and considering the ordinal scale in the ranking of the

■ three considered methods: 1) naive OF, 2) OF, 3) multi-class RF

- prediction performance: For all settings (with not negligibly small signal) OF better than naive OF and multi-class RF
- variable importance (based on misclassification error rate): OF better than multi-class RF, no improvement over naive OF
- OF particularly effective when the low and high classes are smaller (common in practice)

Outlook: Estimating conditional class probabilities and considering the ordinal scale in the ranking of the variables

Ordinal forests

Outlook: Estimating conditional class probabilities considering the ordinal scale in the ranking of the variables

Background:

- 1 in its original form (Hornung (2020a)) OF only suitable for point class prediction, not conditional class probability estimation
- 2 Buri & Hothorn (2020): introduce Ordinal Transformation Forests (OTFs); find that available performance measures ("equal" and "proportional") do not perform well for conditional class probability estimation using OFs.
- ⇒ New performance measure: Use of (negative) ranked probability score (RPS):

$$\mathsf{RPS} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{J-1} \sum_{i=1}^{J} \left[\widehat{\mathbb{P}}(Y_i \leq j | \boldsymbol{X}_i = x_i) - I(Y_i \leq j) \right]^2$$

Outlook: Estimating conditional class probabilities and considering the ordinal scale in the ranking of the variables

Ordinal forests

Roman Hornung

Introductio

Metho

mplementa

Application & comparison to alternatives

Outlook: Estimating conditional class probabilities and considering the ordinal scale in the ranking of the

- Evaluated OFs for probability estimation with the negative RPS using the same simulation design as Buri & Hothorn (2020).
 - ⇒ Much better performance than for performance measures "equal" and "proportional"; performance comparable to OTFs (depending on setting: similar, better or worse).
- New VIM based on RPS:

$$VIM_{j} = \frac{1}{ntree} \sum_{i=1}^{ntree} RPS_{tree,i}^{(OOB-permuted j)} - RPS_{tree,i}$$

- To Do: Performance evaluation of new VIM...

Ordinal forests

Roman Hornung

Introduction

Method

Implementatio

Application & comparison to

Outlook: Estimating conditional class probabilities and considering the ordinal scale in the ranking of th

Thank you for your attention!

References

Ordinal forests

Roman Hornung

Introductio

Application &

comparison to alternatives

Outlook:
Estimating
conditional
class
probabilities
and
considering
she ordinal
scale in the
variables

Ben-David, A. (2008).

Comparison of classification accuracy using Cohen's Weighted Kappa.

Expert Systems with Applications **34**, 825–832.

Buri, M. and Hothorn, T. (2020).

Model-based random forests for ordinal regression.

International Journal of Biostatistics 16(2), 20190063.

Hornung, R. (2020a).
Ordinal Forests

Ordinal Forests.

Journal of Classification 37, 4–17.

Hornung, R. (2020b).

ordinalForest: Ordinal Forests: Prediction and Variable Ranking with Ordinal Target Variables.

R package version 2.4-1.

http://cran.R-project.org/package=ordinalForest

Janitza, S., Tutz, G., and Boulesteix, A.-L. (2016).

Random forest for ordinal responses: prediction and variable selection.

Computational Statistics and Data Analysis **96**, 57–73.

Wright, M. and Ziegler, A. (2017).

ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R.

Journal of Statistical Software 77, 1–17.

Performance measures $g(\cdot)$ for different purposes

Ordinal forests

Roman Hornun Be Yind (y, \hat{y}, j) Youden's index for predicting class j, where y / \hat{y} is the vector of true / predicted classes, then:

 \blacksquare equal classification performance for **all classes** \Rightarrow

$$g(\mathbf{y}, \widehat{\mathbf{y}}) = \frac{1}{J} \sum_{j=1}^{J} \text{Yind}(\mathbf{y}, \widehat{\mathbf{y}}, j)$$

■ equal classification performance for **all observations** ⇒

$$g(\boldsymbol{y}, \widehat{\boldsymbol{y}}) = \sum_{i=1}^{J} \frac{\#\{y_i = j : i \in \{1, \dots, n\}\}}{n} \; \mathsf{Yind}(\boldsymbol{y}, \widehat{\boldsymbol{y}}, j)$$

 \blacksquare optimal prediction performance for class $I \Rightarrow$

$$g(y, \widehat{y}) = \text{Yind}(y, \widehat{y}, l)$$

Real data analysis - datasets

Ordinal forests

Dataset	# observ.	# classes	class frequenc.	# covariates
mammography	412	3	234, 104, 74	5
nhanes	1914	5	198, 565, 722, 346, 83	26
supportstudy	798	5	310, 104, 57, 7, 320	15
vlbw	218	9	33, 16, 19, 15, 25, 27, 35, 36, 12	10
winequality	4893	6	20, 163, 1457, 2198, 880, 175	11

Real data analysis - results: quadratically weighted Kappa

Ordinal forests

Simulation - study design

Ordinal forests

Romar Hornun

- three methods: 1) naive OF, 2) OF, 3) multi-class RF
- **30 settings**, 100 datasets per setting
- setting parameters:
 - correlations among covariates
 - sample size
 - number of covariates
 - numbers of classes of ordinal outcome
 - known true intervals considered for latent variable underlying ordinal outcome

Simulation - results II

Ordinal forests

Roman Hornung

■ partition $[0, b_1], [b_1, b_2], \dots]b_{J-1}, 1]$ of [0, 1] corresponding to the optimized scores s_1, \dots, s_J NO meaningful indicator of actual "class widths"

Performance regarding class probability estimation: Predicted out-of-sample log-likelihood minus true log-likelihood

Ordinal forests

Performance regarding class probability estimation: Predicted out-of-sample log-likelihood

Ordinal forests

Romar Hornun

Performance regarding class probability estimation: Kullback-Leibler divergence - $\mathbb{P}(Y=y|\boldsymbol{X}=x)$ vs. $\widehat{\mathbb{P}}(Y=y|\boldsymbol{X}=x)$

Ordinal forests

Performance regarding class probability estimation: Kullback-Leibler divergence - Y vs. $\widehat{\mathbb{P}}(Y=y|\boldsymbol{X}=x)$

Ordinal forests

Performance regarding point prediction: Kullback-Leibler divergence - \widehat{Y} vs. $\mathbb{P}(Y = y | X = x)$

Ordinal forests

