Institute for medical information - processing, biometry, and epidemiology (IBE)
print

Language Selection

Breadcrumb Navigation


Content

Maximilian Mandl, MSc

Contact

Marchioninistr. 15, 81377 München

Room: K U1 820
Phone: +49 (0)89 /4400 77497
Fax: +49 (0)89 /440074753

About:

After previously being a student assistant to Prof. Monika Schnitzer (Economics, LMU Munich), Prof. Christoph Trebesch (Economics, LMU) jointly with Prof. Carmen Reinhart (Economics, Harvard) and Dr. Mark L. J. Wright (Economics, Federal Reserve Bank of Chicago), Prof. Christian Heumann (Statistics, LMU), and Prof. Bernd Bischl (Statistics, LMU), I started my PhD at the working group Biometry in Molecular Medicine (led by Prof. Anne-Laure Boulesteix) in March 2020. My main focus of research is on researcher degrees of freedom and p-hacking.

I obtained a Bachelor's degree (B.Sc.) in Economics, a Master's degree (M.Sc.) in Biostatistics, and a Master's degree (M.A.) in Philosophy from the Ludwig-Maximilians-University Munich. In addition, I obtained a Master's degree (M.Sc.) in Statistics from the London School of Economics.

Research Interests:

Researcher degrees of freedom
P-hacking and fishing expeditions
Multiplicity and uncertainties

Publications:

Submitted

  • Mandl, M.M., Boulesteix, A.-L., Burgess, S., Zuber, V. Outlier Detection in Mendelian Randomisation.
  • Becker-Pennrich, A.S., Mandl, M.M., Rieder, C., Hoechter, D.J., Dietz, K., Geisler, B.P., Boulesteix, A.-L., Tomasi, R., Hinske. L.C. Comparing supervised machine learning algorithms for the prediction of partial arterial pressure of oxygen during craniotomy. medRxiv: https://doi.org/10.1101/2022.06.07.22275483

Published

  • Mandl, M.M., Becker-Pennrich, A.S., Hinske, L.C., Hoffmann, S., Boulesteix, A.-L. (2024) Addressing researcher degrees of freedom through minP adjustment. BMC Med Res Methodol 24, 152. https://doi.org/10.1186/s12874-024-02279-2
  • Mandl, M.M., Hoffmann S., Bieringer S., Jacob A.E., Kraft M., Lemster, S., Boulesteix, A.-L. (2024) Raising awareness of uncertain choices in empirical data analysis: A teaching concept toward replicable research practices. PLOS Computational Biology 20(3): e1011936. https://doi.org/10.1371/journal.pcbi.1011936
  • Woehrle, T., Pfeiffer, F., Mandl, M.M., Sobtzick, W., Heitzer, J., Krstova, A., Kamm, L., Feuerecker, M., Moser, D., Klein, M., Aulinger, B., Dolch, M., Boulesteix, A.-L., Lanz, D., Chouk´er, A. (2024) Point-of-care breath sample analysis by semiconductor-based E-Nose technology discriminates non-infected subjects from SARS-CoV-2 pneumonia patients: a multi-analyst experiment. MedComm: 5:e726. https://doi.org/10.1002/mco2.726
  • Seibold, H., Czerny, S., Decke, S., Dieterle, R., Eder, T., Fohr, S., Hahn, N., Hartmann, R., Heindl, C., Kopper, P., Lepke, D., Loidl, V., Mandl, M.M., Musiol, S., Peter, J., Piehler, A., Rojas, E., Schmid, S., Schmidt, H., Schmoll, M., Schneider, L., To, X.Y., Tran, V., Völker, A., Wagner, M., Wagner, J., Waize, M., Wecker, H., Yang, R., Zellner, S., Nalenz, M. (2021) A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses. PLoS One. 21;16(6):e0251194. https://doi.org/10.1371/journal.pone.0251194